Difference between revisions of "Reducing Power Consumption"
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | {{Pandocs| | + | {{Pandocs|reducing-power-consumption}} |
− | The following can be used to | + | The following programming techniques can be used to reduce the power consumption of the GameBoy hardware and extend the life of the batteries. |
− | == | + | == Using the HALT Instruction == |
− | + | The HALT instruction should be used whenever possible to reduce power consumption & extend the life of the batteries. This command stops the system clock, reducing the power consumption of both the CPU and ROM. | |
− | The CPU will remain | + | The CPU will remain stopped until an interrupt occurs at which point the interrupt is serviced and then the instruction immediately following the HALT is executed. |
Depending on how much CPU time is required by a game, the HALT instruction can extend battery life anywhere from 5 to 50% or possibly more. | Depending on how much CPU time is required by a game, the HALT instruction can extend battery life anywhere from 5 to 50% or possibly more. | ||
Line 28: | Line 28: | ||
ld (hl),a ;set vblank_flag back to zero | ld (hl),a ;set vblank_flag back to zero | ||
− | The vblank_flag is used to determine whether the HALT period has been terminated by a vblank interrupt, or by another interrupt. In case | + | The vblank_flag is used to determine whether the HALT period has been terminated by a vblank interrupt, or by another interrupt. In case your program has all other interrupts disabled, then it would be okay to replace the above procedure by a single HALT instruction. |
− | + | Another possibility is, if your game uses no other interrupt than VBlank (or uses no interrupt), to only enable VBlank interrupts and simply use a halt instruction, which will only resume main code execution when a VBlank occurs. | |
− | |||
− | |||
+ | Remember when using HALT to wait between VBlanks, your interrupt routines MUST enable interrupts (ie with ei during the execution, or better, using the RETI instruction) | ||
− | == | + | == Using the STOP Instruction == |
− | If your | + | The STOP instruction is intended to switch the gameboy into VERY low power standby mode. For example, a program may use this feature when it hasn't sensed keyboard input for a longer period (for example, when somebody forgot to turn off the gameboy). |
+ | |||
+ | Before invoking STOP, it might be required to disable Sound and Video manually (as well as IR-link port in CGB). Much like HALT, the STOP state is terminated by interrupt events. STOP is commonly terminated with a joypad interrupt. | ||
+ | |||
+ | During STOP mode, the display will turn white, so avoid using it in your game's main loop. | ||
+ | |||
+ | == Disabling the Sound Controller == | ||
+ | |||
+ | If your program doesn't use sound at all (or during some periods) then write 00h to register FF26 to save 16% or more on GB power consumption. | ||
Sound can be turned back on by writing 80h to the same register, all sound registers must be then re-initialized. | Sound can be turned back on by writing 80h to the same register, all sound registers must be then re-initialized. | ||
− | When the gameboy | + | When the gameboy is turned on, sound is enabled by default, and must be turned off manually when not used. |
− | == | + | == Not using CGB Double Speed Mode == |
− | Because CGB Double Speed mode consumes more power, it' | + | Because CGB Double Speed mode consumes more power, it's recommended to use normal speed when possible. |
There's limited ability to switch between both speeds, for example, a game might use normal speed in the title screen, and double speed in the game, or vice versa. | There's limited ability to switch between both speeds, for example, a game might use normal speed in the title screen, and double speed in the game, or vice versa. | ||
− | However, during speed switch the display collapses for a short moment, so | + | However, during speed switch, the display collapses for a short moment, so it's not a good idea to alter speeds within active game or title screen periods. |
+ | |||
+ | == Using the Skills == | ||
− | + | Most of the above power saving methods will produce best results when using efficient and tight assembler code which requires as little CPU power as possible. Using a high level language will require more CPU power and these techniques will not have as big as an effect. | |
− | + | To optimize you code, it might be a good idea to look at [http://wikiti.brandonw.net/index.php?title=Z80_Optimization this page], although it applies to the original Z80 CPU, so one must adapt the optimizations to the GBZ80. |
Latest revision as of 21:42, 4 April 2020
The copy of Pan Docs hosted on this wiki is considered deprecated.
Pan Docs is now officially hosted on gbdev.io as a living document. Please go to https://gbdev.io/pandocs/ to read Pan Docs or to https://github.com/gbdev/pandocs to contribute.
Click here to go to this section of Pan Docs in the new location: https://gbdev.io/pandocs/#reducing-power-consumption
The following programming techniques can be used to reduce the power consumption of the GameBoy hardware and extend the life of the batteries.
Contents
Using the HALT Instruction
The HALT instruction should be used whenever possible to reduce power consumption & extend the life of the batteries. This command stops the system clock, reducing the power consumption of both the CPU and ROM.
The CPU will remain stopped until an interrupt occurs at which point the interrupt is serviced and then the instruction immediately following the HALT is executed.
Depending on how much CPU time is required by a game, the HALT instruction can extend battery life anywhere from 5 to 50% or possibly more.
When waiting for a vblank event, this would be a BAD example:
@@wait: ld a,(0FF44h) ;LY cp a,144 jr nz,@@wait
A better example would be a procedure as shown below. In this case the vblank interrupt must be enabled, and your vblank interrupt procedure must set vblank_flag to a non-zero value.
ld hl,vblank_flag ;hl=pointer to vblank_flag xor a ;a=0 @@wait: ;wait... halt ;suspend CPU - wait for ANY interrupt cp a,(hl) ;vblank flag still zero? jr z,@@wait ;wait more if zero ld (hl),a ;set vblank_flag back to zero
The vblank_flag is used to determine whether the HALT period has been terminated by a vblank interrupt, or by another interrupt. In case your program has all other interrupts disabled, then it would be okay to replace the above procedure by a single HALT instruction.
Another possibility is, if your game uses no other interrupt than VBlank (or uses no interrupt), to only enable VBlank interrupts and simply use a halt instruction, which will only resume main code execution when a VBlank occurs.
Remember when using HALT to wait between VBlanks, your interrupt routines MUST enable interrupts (ie with ei during the execution, or better, using the RETI instruction)
Using the STOP Instruction
The STOP instruction is intended to switch the gameboy into VERY low power standby mode. For example, a program may use this feature when it hasn't sensed keyboard input for a longer period (for example, when somebody forgot to turn off the gameboy).
Before invoking STOP, it might be required to disable Sound and Video manually (as well as IR-link port in CGB). Much like HALT, the STOP state is terminated by interrupt events. STOP is commonly terminated with a joypad interrupt.
During STOP mode, the display will turn white, so avoid using it in your game's main loop.
Disabling the Sound Controller
If your program doesn't use sound at all (or during some periods) then write 00h to register FF26 to save 16% or more on GB power consumption. Sound can be turned back on by writing 80h to the same register, all sound registers must be then re-initialized. When the gameboy is turned on, sound is enabled by default, and must be turned off manually when not used.
Not using CGB Double Speed Mode
Because CGB Double Speed mode consumes more power, it's recommended to use normal speed when possible. There's limited ability to switch between both speeds, for example, a game might use normal speed in the title screen, and double speed in the game, or vice versa. However, during speed switch, the display collapses for a short moment, so it's not a good idea to alter speeds within active game or title screen periods.
Using the Skills
Most of the above power saving methods will produce best results when using efficient and tight assembler code which requires as little CPU power as possible. Using a high level language will require more CPU power and these techniques will not have as big as an effect.
To optimize you code, it might be a good idea to look at this page, although it applies to the original Z80 CPU, so one must adapt the optimizations to the GBZ80.